

УДК 547.415.057

СИНТЕЗ (3*R*,10*R*)- И (3*S*,10*S*)-ДИАСТЕРЕОМЕРОВ 3,10-ДИМЕТИЛСПЕРМИНА

© 2020 г. М. А. Хомутов*, М. Т. Хивонен**, А. И. Салихов*, А. О. Чижов***, И. М. Рыжов****, С. Н. Кочетков*, Й. Вепсалайнен**, Т. А. Кейнанен**, А. Р. Хомутов*,#

*Институт молекулярной биологии им. В.А. Энгельгардта РАН, Россия, 119991 Москва, ул. Вавилова, 32 **Департамент Фармации, Биоцентр Куопио, Университет Восточной Финляндии, Куопио, FI-70210 Финляндия

***Институт органической химии им. Н.Д. Зелинского РАН, Россия, 119991 Москва

****ФГБУН Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН,

Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

Поступила в редакцию 18.04.2020 г. После доработки 26.04.2020 г. Принята к публикации 30.04.2020 г.

Предложен простой и удобный десятистадийный способ синтеза неизвестных ранее диастереомеров 1,12-диамино-3,10-диметил-4,9-диазадодекана (3,10-Me₂Spm), исходя из коммерчески доступных энантиомеров 2-(Вос-амино)-1-пропанола. Целевые соединения были получены в граммовых количествах с высокой энантиомерной чистотой. Поскольку биохимические свойства диастереомеров 3,10-Me₂Spm определяются конфигурацией хиральных центров, эти соединения представляют интерес не только для исследования ферментов метаболизма спермина и изучения его клеточных функций, но также и для изучения особенностей заболеваний, обусловленных нарушениями метаболизма спермина.

Ключевые слова: полиамины, аналоги спермина, (3R,10R)- и (3S,10S)-3,10-Ме₂Spm, сперминоксидаза, ацетилполиаминоксидаза

DOI: 10.31857/S0132342320060123

ВВЕДЕНИЕ

Биогенные полиамины спермин (Spm), спермидин (Spd) и их предшественник путресцин (Put) представляют собой низкомолекулярные поликатионы и присутствуют в клетках всех типов в μ M-mM концентрациях, что, соответственно, и определяет множественность их клеточных функций, большинство из которых жизненно необходимы [1, 2]. Нарушение внутриклеточного содержания полиаминов сопутствует различным заболеваниям, таким как атеросклероз, инсульт, некоторые виды панкреатита, синдром Шнайдера-Робинсона, болезни Альцгеймера и Паркинсона, а также сопровождает воспалительные процессы и заболевания, связанные со снижением иммунного ответа [3–8]. Содержание полиаминов в опухолевых

[#] Автор для связи: (тел.: +7 (499) 135-60-65;

эл. почта: alexkhom@list.ru).

клетках повышено, а соединения, способные понижать их уровень, обладают противоопухолевой активностью [9] и используются также в период ремиссии [10].

Синдром Шнайдера-Робинсона – редкое заболевание, возникающее вследствие мутаций в гене сперминсинтазы человека, приводящих к значительному снижению количества Spm и увеличению содержания Spd во многих тканях, включая и мозг. Заболевание характеризуется умственной отсталостью, остеопорозом, гипотонией, нарушениями речи и судорогами [11]. Обработка Spm клеточных линий, полученных от пациентов с этим диагнозом, нормализует соотношение Spd/Spm, но для терапии (in vivo) подобный подход не пригоден [12] из-за легкости превращения Spm в Spd (рис. 1). Кроме того, Spm легко подвергается окислительному расщеплению как с участием сперминоксидазы (SMOX), так и с участием N^1 -ацетилполиаминооксидазы (РАОХ) (рис. 1), вследствие чего образуются токсичные акролеин и перекись водорода [1, 9].

Однако для лечения синдрома Шнайдера-Робинсона могут быть полезны функционально-активные, метаболически устойчивые миметики Spm.

Сокращения: dcAdoMet — декарбоксилированный S-аденозил-L-метионин; PAOX — N^1 -ацетилполиаминоксидаза; 1,12-Me₂Spm — 2,13-диамино-5,10-диазатетрадекан; 3,10-Me₂Spm — 1,12-диамино-3,10-диметил-4,9-диазадодекан; Put — путресцин (1,4-диаминобутан); Spd — спермидин (1,8-диамино-4-азаоктан); Spm — спермин (1,12-диамино-4,9-диазадодекан); SMOX — сперминоксидаза; SSAT — спермидин/спермин N^1 -ацетилтрансфераза.

Рис. 1. Катаболизм и взаимопревращения полиаминов. РАОХ – ацетилполиаминоксидаза; SSAT – спермидин/спермин-*N*¹-ацетилтрансфераза; SMOX – сперминоксидаза; SpdSy – спермидинсинтаза; SpmSy – сперминсинтаза.

(1*R*,12*R*)-1,12-Ме₂Spm (рис. 2) является аналогом Spm с требуемым набором свойств и не проявляет субстратных свойств ни в отношении спермидин/ спермин- N^1 -ацетилтрансферазы (SSAT), ни в отношении SMOX (рис. 1), тогда как (1*S*,12*S*)-1,12-Ме₂Spm оказался в два раза лучшим субстратом SMOX по сравнению с природным Spm [13]. Недавно было показано, что (1R,12R)-1,12-Me₂Spm (рис. 2) – первое и елинственное соелинение, которое существенно снижает уровень Spd и возвращает соотношение Spd/Spm к нормальному уровню в различных органах модельных трансгенных мышей, используемых для изучения синдрома Шнайдера-Робинсона [14]. Однако использование (1*R*,12*R*)-1,12-Ме₂Spm в дозах выше 50 мг/кг невозможно из-за его токсичности, обусловленной индукцией SSAT [14].

Клеточные эффекты рацемических *бис*-метилированных аналогов Spm определяются положением метильной группы. Так, рацемический 3,10-Me₂Spm, в отличие от 1,12-Me₂Spm, не индуцирует SSAT в клетках DU145 [16]. Соответственно, один из диастереомеров 3,10-Me₂Spm может оказаться удобным инструментом для изучения синдрома Шнайдера-Робинсона *in vivo* в модельных системах. В настоящей статье мы описываем простой и удобный способ синтеза неизвестных ранее диастереомеров (3R,10R)- и (3S,10S)-3,10-Me₂Spm (рис. 2), которые обладают очевидным биохимическим и, возможно, терапевтическим потенциалом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ключевой стадией синтеза аналогов и производных полиаминов служит создание C—N-связей в "скелете" полиаминов, и для этих целей используются разнообразные методы [17]. Ранее мы описали удобный способ синтеза, позволяющий получить рацемический 3,10-Me₂Spm, исходя из 4-амино-2-бутанола, в качестве предшественника трех-углеродного фрагмента этого аналога [16]. Однако изомеры 4-амино-2-бутанола коммерчески недоступны.

В настоящей работе в качестве исходных веществ для получения диастереомеров 3,10-Me₂Spm нами были использованы (2*R*)- и (2*S*)-изомеры 2-(Вос-амино)-1-пропанола ((Іа) и (Іб) соответственно), которые сначала превращали в Вос-защищенные аминонитрилы согласно описанному в работе [18], а последующее мягкое восстановление с использование LiAlH₄ при -5°C без рацемизации приводило к *N*-Вос-диаминам (IIa) и (Пб) [15]. Карбобензоксилирование свободной аминогруппы давало (3*R*)- и (3*S*)-*N*¹-Cbz-*N*³-Bocдиамины (III), а последующее удаление Вос-защитной группы позволило синтезировать (3R)- и (3S)- N^1 -Cbz-диамины (IV) с практически количественным выходом. Дальнейшие превращения включали в себя получение нозильных производных (Va) и (Vб) и их алкилирование 1,4-дийодбутаном в DMF при 40°С в течение 48 ч в присутствии K_2CO_3 (схема 1). Для удаления не вошедших в реакцию изомеров (Va) и (Vб), к реакционной смеси прибавляли BnBr (15 мол. %) и инкубировали еще 14 ч при 20°С. Затем Ns-защитные группы удаляли

Рис. 2. Структура диастереомеров бис-метилированных аналогов Spm.

"one-pot" действием PhSH/K₂CO₃ в DMF, а соединения (VIa) и (VIб) выделяли колоночной хроматографией на силикагеле. Последующее удаление Cbz-групп каталитическим гидрированием над Pd-чернью и кристаллизация из MeOH-EtOH позволили получить целевые тетрагидрохлориды (3R,10R)- и (3S,10S)-3,10-Me₂Spm's (**VIIa**) и (**VII6**) с суммарными выходами 18 и 16% (10-ти стадийный синтез), считая на исходные (2*R*)- и (2*S*)-*N*-Вос-аланинолы соответственно.

Схема 1. Синтез (*3R*,10*R*)- и (*3S*,10*S*)-диастереомеров 3,10-Me₂Spm. *i* – CbzCl/H₂O/NaHCO₃/THF; *ii* – HCl/MeOH; *iii* – NsCl/CH₂Cl₂/Et₃N; *iv* – J(CH₂)₄J/DMF/K₂CO₃/45°C; *v* – PhSH/DMF/K₂CO₃; *vi* – H₂/Pd/AcOH/MeOH; *vii* – вод. HCl.

Предложены и реализованы удобные схемы синтезов, позволяющие получать граммовые количества диастереомеров 3,10-Me₂Spm с высокими суммарными выходами и оптической чистотой. Полученные диастереомеры 3,10-Me₂Spm могут быть полезными инструментами в изучении ферментов метаболизма полиаминов, и, весьма вероятно, будут обладать различной активностью в экспериментах с культурами клеток и *in vivo* в случае моделей синдрома Шнайдера-Робинсона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При выполнении работы были использованы следующие реактивы: бензиловый эфир хлоругольной кислоты (CbzCl), тиофенол, хлорангидрид 2нитробензолсульфокислоты (NsCl), триэтиламин (Et₃N), — все фирмы Aldrich (США). Синтезы (3*R*)и (3*S*)-*N*³-(*трет*-бутилоксикарбонил)-1,3-диаминобутанов были осуществлены, исходя из соответствующих (2*R*)- и (2*S*)-2-(Вос-амино)-1-пропанолов, (Aldrich (США), кат. № 469505 и 469513, соответственно; оба вещества обладали >98% оптической чистотой) согласно описанному ранее [15].

Колоночную хроматографию выполняли на силикагеле Kieselgel (40–63 µm, Merck, Germany), системы для элюции указаны в тексте. ТСХ проводили на пластинках Kieselgel 60 F_{254} plates (Merck, Germany) в системах: CH₂Cl₂–MeOH, 100 : 1 (A), диоксан–25% NH₄OH, 95 : 5 (Б); EtOAc–гексан, 2 : 3 (В); и *n*-BuOH–AcOH–Py–H₂O, 4 : 2 : 1 : 2 (Г). Вещества на хроматограммах визуализировали по УФ-поглощению, Вос-производные при помощи бромфенолового синего, а соединения со свободной аминогруппой – используя цветную реакцию с нингидрином.

Спектры ¹Н и ¹³С ЯМР регистрировали на спектрометре Bruker AM-300 в CDCl₃ и D₂O, внутренний стандарт – Me₄Si (CDCl₃) и натриевая соль 3триметилсилилпропан-сульфокислоты (D₂O). Химические сдвиги приведены в миллионных долях, а КССВ – в герцах. Температуру плавления определяли в открытом капилляре на приборе Mel-Temp 1202D фирмы Electrotermals. Величину удельного вращения определяли на приборе 341 Polarimeter фирмы Perkin-Elmer, растворители и концентрации растворов указаны в тексте. Элементный анализ выполняли на CHN-анализаторе Carlo Erba 1106. Масс-спектры высокого разрешения (HR-MS) регистрировали на приборе Bruker maXis методом электрораспылительной ионизации (ESI) [19]. Измерения выполняли на положительных ионах (напряжение на капилляре – 4500 В) в диапазоне *m/z* 50-3000 с использованием внешней калибровки (ESI Tuning Mix, Agilent). Шприцевой ввод тетрагидрохлоридов (VIIa)/(VIIб) осуществляли в виде их водных растворов, для остальных веществ в качестве растворителя использовали ацетонитрил; скорость потока – 5 мкл/мин; газ-распылитель – азот; температура интерфейса – 180°С.

(3R)- N^1 -(Бензилоксикарбонил)- N^3 -(*трет*-бутилоксикарбонил)-1,3-диаминобутан (IIIа). К охлажденному до 8°С раствору 3.7 г (19.7 ммоль) (3R)- N^{3} -(*трет*-бутилоксикарбонил)-1,3-диаминобутана (IIa) и 2.53 г (20.5 ммоль) Еt₃N в 60 мл смеси $C_6H_6/Et_2O(1:2)$ при перемешивании прибавляли за 40 мин раствор 3.5 г (20.5 ммоль) CbzCl в 15 мл C₆H₆, перемешивали 1 ч при 8°С и 4 ч при 20°С. Осадок отфильтровывали, фильтрат промывали последовательно H_2O (3 × 15 мл), 10% лимонной кислотой (4 × 15 мл), H₂O (10 мл), 5 М NaCl (2×15 мл) и высушивали над MgSO₄. Растворитель отгоняли в вакууме, остаток очищали колоночной хроматографией на SiO₂ (90 г), элюируя смесью CH₂Cl₂-MeOH, 98 : 2. Фракции, содержащие соединение (IIIa), упаривали в вакууме досуха, что привело к густому маслу, затвердевшему при высушивании в вакууме (25°С/0.5 мм Hg). После перекристаллизации из гексана получали 5.2 г (82%) соединения (IIIa), т.пл. 82.5-83°С, $R_f 0.39$ (A), $[\alpha]_D^{20} -50.4^\circ$ (c 2.0, CH₂Cl₂). ¹H-ЯМР (CDCl₃) б: 7.39–7.27 (5Н, м, Ph), 5.55 (1Н, уш.с., NHCbz), 5.09 (2H, c, CH₂Ph), 4.31 (1H, ym.c., NHBoc), 3.8–3.69 (1H, м, CH), 3.55–3.35 (1H, м, NHCH₂), 3.08–2.91 (1Н, м, NHCH₂), 1.77–1.63 (1Н, м, CH₂CH), 1.52–1.32 (10H, м, C(CH₃)₃ + CH₂CH), 1.14 (3H, д, J 6.5, CH₃). ¹³С-ЯМР (CDCl₃) δ: 156.59, 156.07, 136.93, 128.58, 128.12, 128.04, 79.50, 66.55, 43.93, 37.94, 37.15, 28.45, 21.60. Найдено, %: С 63.47; Н 8.21; N 8.58. С₁₇Н₂₆N₂O₄. Вычислено, %: С 63.33; H 8.13; N 8.69.

(3*S*)-*N*¹-(Бензилоксикарбонил)-*N*³-(*трет*-бутилоксикарбонил)-1,3-диаминобутан (III6). Получали аналогично соединению (IIIа), исходя из 2.76 г (14.7 ммоль) соединению (III6) и 2.6 г (15.2 ммоль) Cbz-Cl, что приводило к соединению (III6) (4.07 г, 86%), т. пл. 82.5–83°С, R_f 0.39 (A), $[\alpha]_D^{20}$ +48.9° (*c* 2.0, CH₂Cl₂). ¹H-ЯМР (CDCl₃) δ: 7.40–7.28 (5H, м, Ph), 5.55 (1H, уш.с., NHCbz), 5.05 (2H, с, CH₂Ph),

БИООРГАНИЧЕСКАЯ ХИМИЯ том 46 № 6 2020

4.35 (1H, уш.с., N<u>H</u>Boc), 3.82–3.65 (1H, м, CH), 3.51–3.33 (1H, м, NHC<u>H</u>₂), 3.10–2.88 (1H, м, NHC<u>H</u>₂), 1.78–1.61 (1H, м, C<u>H</u>₂CH), 1.50–1.34 (10H, м, C(CH₃)₃ + C<u>H</u>₂CH), 1.14 (3H, д, *J* 6.5, CH₃). ¹³C-ЯМР (CDCl₃) δ : 156.61, 156.11, 136.95, 128.58, 128.17, 128.09, 79.54, 66.61, 43.96, 37.97, 37.19, 28.50, 21.69. Найдено, %: C 63.41; H 8.18; N 8.66. C₁₇H₂₆N₂O₄. Вычислено, %: C 63.33; H 8.13; N 8.69.

(3R)- N^{1} - (Бензилоксикарбонил)- N^{3} - (2-нитрофенилсульфонил)-1,3-диаминобутан (Va). К охлажденному до 0°С раствору 4.76 г (14.8 ммоль) соединения (IIIa) в 15 мл абс. ЕtOH прибавляли 6 мл 10 М HCl/EtOH и через 3 ч при 20°С реакционную смесь упаривали в вакууме досуха. Остаток соупаривали с EtOH (2 × 20 мл), растворяли в EtOH (15 мл), выливали в абс. Et₂O (150 мл) и оставляли на ночь при –20°С. Выделившееся масло отделяли, к остатку прибавляли 2 М NaOH (15 мл) и экстрагировали CH_2Cl_2 (4 × 15 мл). Объединенные CH_2Cl_2 -вытяжки последовательно промывали $H_2O(2 \times 15 \text{ мл})$, 5 M NaCl (2 \times 15 мл) и высушивали над K₂CO₃. Растворитель отгоняли в вакууме, остаток высушивали в вакууме над Р₂О₅ и получали соединение (**IVa**) (2.7 г, 82%) в виде густого масла, $R_f 0.35$ (Б). ¹H-ЯМР (CDCl₃) δ: 7.39–7.30 (5H, м, Ph), 5.46 (1H, уш.с, NH), 5.10 (2H, с, CH₂Ph), 3.46–3.30 (1H, м, NHCH₂), 3.29–3.16 (1H, м, NHCH₂), 3.04–2.90 (1H, м, CH), 1.66–1.52 (1H, м, NHCH₂CH₂), 1.50–1.30 (3H, м, NHCH₂C<u>H</u>₂ + NH₂), 1.10 (3H, д, J 6.4, CH₃). ¹³C-ЯМР (CDCl₃) δ: 156.64, 136.91, 128.64, 128.23, 128.19, 66.71, 45.62, 39.23, 29.84, 24.97.

Кохлажденному до 4°С раствору 2.64 г (11.9 ммоль) соединения (IVa) и 2.13 мл (15.4 ммоль) Et₃N в 25 мл абс. CH₂Cl₂ прибавляли при перемешивании в течение 10 мин раствор 2.68 г (12.1 ммоль) NsCl в 25 мл абс. CH_2Cl_2 , перемешивали 1 ч при 4°С и еще 3 ч при 20°С. Осадок отфильтровывали, фильтрат разбавляли 25 мл CH₂Cl₂ и последовательно промывали H₂O (3 × 15 мл), 10% лимонной кислотой (4 × 20 мл), H₂O (15 мл), 5 M NaCl (2 × × 15 мл) и высушивали над MgSO₄. Растворитель отгоняли в вакууме, остаток очищали колоночной хроматографией на SiO₂ (160 г), элюируя смесью $CH_2Cl_2 \rightarrow CH_2Cl_2/MeOH = 100: 0.5.$ Фракции, содержащие соединение (Va), упаривали в вакууме досуха и получали 4.1 г (85%, считая на (IVa)) соединения (Va), в виде полузакристаллизовавшегося масла, *R*_f 0.21 (В), [α]_D²⁰ –150.8° (*с* 3.0, CH₂Cl₂). ¹Н-ЯМР (CDCl₃) δ: 8.17–8.09 (1Н, м, Ns), 7.89–

¹H-ЯМР (CDCl₃) δ : 8.17–8.09 (1H, м, Ns), 7.89– 7.80 (1H, м, Ns), 7.76–7.67 (2H, м, Ns), 7.41–7.29 (5H, м, Ph), 5.25–5.14 (2H, м, NH-Cbz + NH-Ns), 5.10 (2H, c, CH₂Ph), 3.66–3.50 (1H, м, CH), 3.47– 3.33 (1H, м, NHCH₂), 3.29–3.15 (1H, м, NHCH₂), 1.87–1.69 (1H, м, NHCH₂CH₂), 1.61–1.48 (1H, м, NHCH₂CH₂), 1.04 (3H, д, *J* 6.6, CH₃). ¹³C-ЯМР (CDCl₃) δ : 156.59, 147.98, 136.75, 133.73, 133.07, 130.83, 128.66, 128.23 (2C), 125.57, 66.78, 48.80, 37.65, 37.58, 21.71. HRESIMS: *m/z* вычислено C₁₈H₂₂N₃O₆S⁺, [M + H]⁺: 408.1224. Найдено: 408.1221.

(3*S*)-*N*¹-(Бензилоксикарбонил)-*N*³-(2-нитрофенилсульфонил)-1,3-диаминобутан (V6). Получали аналогично соединению (Vа), исходя из 2.96 г (9.2 ммоль) соединения (III6) через промежуточное соединение (IV6), R_f 0.35 (Б), ¹H-ЯМР (CDCl₃) δ : 7.38–7.28 (5H, м, Ph), 5.48 (1H, уш.с., NH), 5.09 (2H, с, CH₂Ph), 3.43–3.30 (1H, м, NHCH₂), 3.28–3.17 (1H, м, NHCH₂), 3.02–2.92 (1H, м, CH), 1.64–1.52 (1H, м, NHCH₂CH₂), 1.48–1.37 (1H, м, NHCH₂CH₂), 1.22 (2H, уш.с., NH₂), 1.09 (3H, д, *J* 6.4, CH₃). ¹³C-ЯМР (CDCl₃) δ : 156.66, 136.83, 128.63, 128.21, 128.18, 66.55, 45.49, 39.11, 29.82, 24.78, что проводило к соединению (V6) (2.51 г, 67%, считая на III6) в виде полузакристал-

лизовавшегося масла, R_f 0.22 (B), $[\alpha]_D^{20}$ +149.6° (*c* 3.0, CH₂Cl₂). ¹H-ЯМР (CDCl₃) δ: 8.17–8.10 (1H, м, Ns), 7.88–7.81 (1H, м, Ns), 7.75–7.68 (2H, м, Ns), 7.41–7.29 (5H, м, Ph), 5.20–5.08 (м, 4H, NH-Ns + + NH-Cbz + CH₂Ph), 3.65–3.52 (1H, м, CH), 3.46–3.35 (1H, м, NHC<u>H₂</u>), 3.29–3.17 (1H, м, NHC<u>H₂</u>), 1.87–1.71 (1H, м, NHCH₂C<u>H₂</u>), 1.64–1.49 (1H, м, NHCH₂C<u>H₂</u>), 1.04 (3H, д, *J* 6.6, CH₃). ¹³C-ЯМР (CDCl₃) δ: 156.60, 148.03, 136.78, 133.72, 133.07, 130.82, 128.67, 128.25 (2C), 125.59, 66.81, 48.82, 37.72, 37.22, 21.73. HRESIMS: *m/z* вычислено для C₁₈H₂₂N₃O₆S⁺, [M + H]⁺: 408.1224. Найдено: 408.1220.

(3R,10R)-N¹, N¹²-Бис-(бензилоксикарбонил)-1,12диамино-3,10-диметил-4,9-диазадодекан (VIa). Суспензию 3.6 г (8.86 ммоль) соединения (Va), 3.8 г (27.2 ммоль) К₂СО₃ и 1.18 г (3.81 ммоль) 1,4-дийодбутана в абс. DMF (15 мл) перемешивали в течение 24 ч при 45°С, прибавляли 0.5 мл (4.2 ммоль) BnBr и перемешивали еще 12 ч при 20°С. Затем к реакционной смеси прибавляли 2.0 г (14 ммоль) К₂СО₃ и 2.0 мл (19.2 ммоль) PhSH в DMF (5 мл) и перемешивали 12 ч при 20°С, осадок отделяли центрифугированием, промывали DMF (2×15 мл) и объединенные органические вытяжки упаривали в вакууме. Остаток растворяли в CH₂Cl₂ (25 мл), последовательно промывали H₂O (2 × 5 мл), 5M NaCl $(2 \times 5 \text{ мл})$ и высушивали над К₂CO₃. Растворитель отгоняли в вакууме, остаток очищали колоночной хроматографией на SiO₂ (90 г), элюируя смесью диоксан — 25% NH₄OH (95:5). Фракции, содержащие соединение (VIa), упаривали в вакууме досуха и остаток высушивали над Р2О5, что приводило к соединению (VIa) (3.18 г, 72%) в виде бесцветного масла. $R_f 0.24$ (Б), $[\alpha]_D^{20} - 16.9^\circ$ (с 2.0, CH₂Cl₂). ¹H-ЯМР (CDCl₃) 7.41–7.28 (10H, м, 2*Ph),

5.98 (2H, уш.с, 2*NHCbz), 5.09 (4H, с, 2*C<u>H</u>₂Ph), 3.41–3.15 (4H, м, 2*CbzNHC<u>H</u>₂), 2.78–2.57 (4H, м, 2*CH + CHC<u>H</u>₂), 2.55–2.42 (2H, м, CHC<u>H</u>₂), 1.65–1.39 (10H, м, 2*NHCH₂CH₂, 1.05 (6H, д, *J* 6.4, 2*CH₃). ¹³C-ЯМР (CDCl₃) δ : 156.58, 137.07, 128.58, 128.08 (2C), 66.50, 52.29, 47.01, 39.11, 35.85, 28.41, 20.54. HRESIMS: *m/z* вычислено для C₂₈H₄₃N₄O⁴₄, [M + H]⁺: 499.3279. Найдено: 499.3274.

(35,105)-N¹,N¹²-Бис-(бензилоксикарбонил)-1,12диамино-3,10-диметил-4,9-диазадодекан (VI6). Получали аналогично соединению (VIa), исходя из 2.4 г (5.83 ммоль) соединения (V6) и 0.84 г (2.7 ммоль) 1,4-дийодбутана в абс. DMF, что после очистки при помощи колоночной хроматографии на силикагеле приводило к соединению (VI6) (2.03 г,

70%) в виде бесцветного масла. $R_f 0.24$ (Б), $[\alpha]_D^{20}$ +16.3° (*c* 2.0, CH₂Cl₂). ¹H-ЯМР (CDCl₃) 7.40–7.27 (10H, м, 2*Ph), 5.98 (2H, уш.с, 2*NHCbz), 5.09 (4H, c, 2*CH₂Ph), 3.40–3.15 (4H, м, 2*CbzNHCH₂), 2.78–2.56 (4H, м, 2*CH + CHCH₂), 2.55–2.41 (2H, м, CHCH₂), 1.67–1.38 (10H, м, NHCH₂CH₂), 1.05 (6H, д, *J* 6.4, 2*CH₃). ¹³C-ЯМР (CDCl₃) δ: 156.58, 137.08, 128.59, 128.09 (2C), 66.51, 52.31, 47.02, 39.13, 35.85, 28.42, 20.55. HRESIMS: *m/z* вычислено для

С₂₈Н₄₃N₄O⁺₄, [M + H]⁺: 499.3279. Найдено: 499.3275.

Тетрагидрохлорид (3R,10R)-1,12-диамино-3,10диметил-4,9-диазадодекана (VIIa). К раствору 2.86 г (5.74 ммоль) соединения (VIa) в 35 мл смеси АсОН : МеОН (1:1) прибавляли 1 мл суспензии Pd-черни в MeOH и гидрировали при атмосферном давлении до прекращения выделения СО₂. Pd-чернь отфильтровывали. промывали MeOH. объединенные фильтраты упаривали в вакууме досуха. Остаток соупаривали с EtOH (2×15 мл), растворяли в 20 мл EtOH, прибавляли 7 мл 5 М HCl и полученный раствор упаривали в вакууме досуха. Остаток соупаривали с EtOH (3×15 мл), высушивали в вакууме над P2O5 и перекристаллизовывали из смеси MeOH-EtOH, что после высушивания в вакууме над P₂O₅/KOH приводило к целевому соединению (VIIa) (1.6 г, 74%) в виде бесцветных кристаллов: т.пл. 242-243°С, R_f 0.16 (Г),

[α]_D²⁰ +5.9° (*c* 2.0, H₂O). ¹H-ЯМР (D₂O) δ: 3.50– 3.37 (2H, м, 2*C<u>H</u>), 3.23–3.03 (8H, м 2*NH₂C<u>H₂</u> + + 2*NHC<u>H₂</u>), 2.26–2.12 (2H, м, 2*CHC<u>H₂</u>), 2.02–1.86 (2H, м, 2*CHC<u>H₂</u>), 1.85–1.72 (4H, м, 2*NHCH₂C<u>H₂</u>), 1.36 (6H, д, *J* 6.6 Hz, 2*CH₃). ¹³C-ЯМР (D₂O) δ: 52.74, 44.87, 36.56, 30.90, 23.71, 15.79.

HRESIMS: *m/z* вычислено для C₁₂H₃₁N⁺₄, [M + H]⁺: 231.2543. Найдено: 231.2545.

Тетрагидрохлорид (3*S***,10***S***)-1,12-диамино-3,10-диметил-4,9-диазадодекана (VII6). Получали аналогично соединению (VIIа), исходя из 1.69 г (3.4 ммоль) соединения (VI6), что приводило к соединению (VII6)** (0.90 г, 70%) в виде бесцветных кристаллов: т.пл.

240–242°C, $R_f 0.16$ (Г), $[\alpha]_D^{20}$ –6.3° (*c* 2.0, H₂O). ¹H-SMP (D₂O) δ : 3.51–3.36 (2H, M, 2*C<u>H</u>), 3.23–3.03 (8H, M 2*NH₂C<u>H</u>₂ + 2*NHC<u>H</u>₂), 2.26–2.12 (2H, M, CHC<u>H</u>₂), 2.02–1.87 (2H, M, 2*CHC<u>H</u>₂), 1.85–1.72 (4H, M, 2*NHCH₂C<u>H</u>₂), 1.36 (6H, π , *J* 6.6 Hz, 2*CH₃). ¹³C-SMP (D₂O) δ : 52.72, 44.88, 36.55, 30.88, 23.71,

15.75. HRESIMS: *m/z* вычислено для C₁₂H₃₁N⁺₄, [M + H]⁺: 231.2543. Найдено: 231.2542.

ФОНДОВАЯ ПОДДЕРЖКА

Синтез соединений выполнен при финансовой поддержке Российского Научного Фонда (грант № 17-74-20049), физико-химические исследования — Российским Фондом Фундаментальных Исследований (грант № 18-54-11008) и Академией Финляндии (грант № 315487).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит каких-либо исследований с участием людей и животных в качестве объектов исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Miller-Fleming L., Olin-Sandoval V., Campbell K., Ralser M. // J. Mol. Biol. 2015. V. 427. P. 3389–3406. https://doi.org/10.1016/j.jmb.2015.06.020
- Pegg A.E. // J. Biol. Chem. 2016. V. 291. P. 14904– 14912.
 - https://doi.org/10.1074/jbc.R116.731661
- Ramani D., De Bandt J.P., Cynober L. // Clin. Nut. 2014. V. 33. P. 14–22. https://doi.org/10.1016/j.clnu.2013.09.019
- Inouel K., Tsutsui H., Akatsu H., Hashizume Y., Matsukawa N., Yamamoto T., Toyo'oka T. // Sci. Rep. 2013. V. 3. P. 2364.
- https://doi.org/10.1038/srep02364
- Alhonen L., Parkkinen J.J., Keinanen T., Sinervirta R., Herzig K.H., Janne J. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 8290–8295. https://doi.org/10.1073/pnas.140122097
- Eisenberg T., Abdellatif M., Schoeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., Tong M., Ruckenstuhl Ch., Dammbrueck Ch., Gross A.S., Herbst V., Magnes Ch., Trausinger G., Narath S., Meinitzer A., Hu Z., Kirsch A., Eller K., Carmona-Gutierrez D., Büttner S., Pietrocola F, Knittelfelder O., Schrepfer E., Rockenfeller P., Simonini C., Rahn A., Horsch M., Moreth K., Beckers J., Fuchs H., Gailus-Durner V., Neff F., Janik D., Rathkolb B., Rozman J., Hrabe de Angelis M., Moustafa T., Haemmerle G., Mayr M., Willeit P., von Frieling-Salews-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 46 № 6 2020

ky M., Pieske B., Scorrano L., Pieber T., Pechlaner R., Willeit J., Sigrist S.J., Linke W.A., Mühlfeld Ch., Sadoshima J., Dengjel J., Kiechl S., Kroemer G., Sedej S., Madeo F. // Nature Med. 2016. V. 22. P. 1428–1438. https://doi.org/10.1038/nm.4222

- Lewandowski N.M., Ju S., Verbitsky M., Ross B., Geddie M.L., Rockenstein E., Adame A., Muhammad A., Vonsattel J.P., Ringe D., Cote L., Lindquist S., Masliah E., Petsko G.A., Marder K., Clark L.N., Small S.A. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 16970–16975. https://doi.org/10.1073/pnas.1011751107
- Igarashi K., Kashiwagi K. // Mol. Nutr. Food Res. 2011. V. 55. P. 1332–1341. https://doi.org/10.1002/mnfr.201100068
- Casero R.A., Murray Stewart T., Pegg A.E. // Nature Rev. Cancer. 2018. V. 18. P. 681–695. https://doi.org/10.1038/s41568-018-0050-3
- Gerner E.W., Bruckheimer E., Cohen A. // J. Biol. Chem. 2018. V. 293. P. 18770–18778. https://doi.org/10.1074/jbc.TM118.003343
- Cason A.L., Ikeguchi Y., Skinner C., Wood T.C., Lubs H.A., Martinez F., Simensen R.J., Stevenson R.E., Pegg A.E., Schwartz C.E. // Eur. J. Hum. Genet. 2003. V. 11. P. 937–944. https://doi.org/10.1038/sj.ejhg.5201072
- Murray-Stewart T., Dunworth M., Foley J.R., Schwartz C.E., Casero R.A. // Med. Sci. (Basel). 2018. V. 6. P. E112. https://doi.org/10.3390/medsci6040112
- Hyvonen M.T., Keinanen T.A., Cerrada-Gimenez M., Sinervirta R., Grigorenko N., Khomutov A.R., Vepsalainen J., Alhonen L., Janne J. // J. Biol. Chem. 2007. V. 282. P. 34700–34706. https://doi.org/10.1074/jbc.M704282200
- Murray Stewart T., Khomutov M., Foley J.R., Guo X., Holbert C.E., Dunston T.T., Schwartz C.E., Gabrielson K., Khomutov A., Casero R.A. // J. Biol. Chem. 2020. V. 295. P. 3247–3256. https://doi.org/10.1074/jbc.RA119.011572
- Grigorenko N.A., Khomutov A.R., Keinänen T.A., Järvinen A., Alhonen L., Jänne J., Vepsäläinen J. // Tetrahedron. 2007. V. 63. P. 2257–2262. https://doi.org/10.1016/j.tet.2006.12.065
- Khomutov M., Hyvönen M.T., Simonian A., Formanovsky A.A., Mikhura I.V., Chizhov A.O., Kochetkov S.N., Alhonen L., Vepsäläinen J., Keinänen T.A., Khomutov A.R. // J. Med. Chem. 2019. V. 62. P. 11335– 11347. https://doi.org/10.1021/acs.jmedchem.9b01666
- Хомутов М.А., Михура И.В., Кочетков С.Н., Хомутов А.Р. // Биоорган. химия. 2019. Т. 45. С. 588–614. [Khomutov M.A., Mikhura I.V., Kochetkov S.N., Khomutov A.R. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 463–487.] https://doi.org/10.1134/S013234231906023X
- Lebreton L., Jost E., Carboni B., Annat J., Vaultier M., Dutartre P., Renaut P. // J. Med. Chem. 1999. V. 42. P. 4749–4763. https://doi.org/10.1021/jm991043x
- Tsedilin A.M., Fakhrutdinov A.N., Eremin D.B., Zalesskiy S.S., Chizhov A.O., Kolotyrkina N. G., Ananikov V. P. // Mend. Commun. 2015. V. 25. P. 454–456. https://doi.org/10.1016/j.mencom.2015.11.019

ХОМУТОВ и др.

Synthesis of (3R, 10R)- and (3S, 10S)-Diastereomers of 3, 10-Dimethylspermine

M. A. Khomutov*, M. T. Hyvönen**, A. I. Salikhov*, A. O. Chizhov***,

I. Ryzhov****, S. N. Kochetkov*, J. Vepsäläinen**, T. A. Keinänen**, and A. R. Khomutov*, #

[#]*Phone:* +7 (499) 135-60-65; e-mail: alexkhom@list.ru

*Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991 Russia
**School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627 Kuopio, 70211 Finland
**Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii prosp. 47, Moscow, 119991 Russia
***Shemvakin–Ovchinnikov Institute of Bioorganic Chemistry, ul. Mikluho-Maklava 16/10, Moscow, 117997 Russia

A simple and practical 10-step synthesis is reported for previously unknown diastereomers of *C*-methylated spermine (Spm) analogue, 1,12-diamino-3,10-dimethyl-4,9-diazadodecane $(3,10-Me_2Spm)$ starting from commercially available enantiomers of 2-(Boc-amino)-1-propanol. Title compounds were prepared in gram scale, in excellent overall yields and enantiomeric purity. Since biochemical properties of 3,10-Me_2Spm can be regulated by changing the configuration of chiral center(s), these analogues are of obvious value for studying not only cellular functions of spermine, but even diseases associated with the disturbances of spermine metabolism.

Keywords: polyamines, spermine analogs, (3R, 10R)- and (3S, 10S)-3, 10-Me₂Spm, spermine oxidase, acetylpolyamine oxidase