

УДК 577.152.34'164.2.08:543.51

МАСС-СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗ АФФИННО-ОЧИЩЕННЫХ ПРОТЕАСОМ ИЗ КЛЕТОК МИЕЛОГЕННОЙ ЛЕЙКЕМИИ ЧЕЛОВЕКА ЛИНИИ К562

© 2014 г. Т. О. Артамонова*, М. А. Ходорковский*, А. С. Цимоха**.#

*ФГБОУ ВПО Санкт-Петербургский Государственный Политехнический Университет **ФГБУН Институт цитологии РАН, 194064, СанктПетербург, Тихорецкий пр., 4 Поступила в редакцию 19.05.2014 г. Принята к печати 11.06.2014 г.

Протеасомы осуществляют регулируемый протеолиз большинства белков в клетке и тем самым играют ключевую роль в регуляции различных клеточных процессов. Одним из важных этапов в понимании функций протеасом в клетке и механизмов их регуляции является определение субъединичного состава и посттрансляционных модификаций протеасом. Для решения этой задачи на примере клеток миелогенной лейкемии человека использована стратегия аффинной очистки протеасом с последующим масс-спектрометрическим анализом. Протеасомы очищали из стабильной клеточной линии К562, экспрессирующей субъединицу β7 (PSMB4) 20S протеасомы, меченную по C-концу HTBH-пептидом, включающим два фрагмента His₆, специфический сайт расшепления Tobacco Etch Virus (TEV)-протеазой и сигнальную последовательность для биотинилирования in vivo, методом нековалентного связывания — через образование комплекса биотина со стрептавидином с последующей элюцией посредством TEV-протеазы. С помощью MALDI-ICR-масс-спектрометрии идентифицированы все субъединицы 26S протеасомы, а также регуляторы РА200 и РА28у. Показано, что с протеасомами ассоциированы белки теплового шока, компоненты убиквитин-протеасомной системы и некоторые белки цитоскелета. Выявлен ряд новых сайтов фосфорилирования, убиквитинилирования и *N*-концевые модификации у 16 субъединиц протеасом. Представленный масс-спектрометрический анализ будет крайне полезен для дальнейших протеомных исследований протеасом при клеточном стрессе.

Ключевые слова: аффинная очистка, масс-спектрометрия, протеасома, клетки миелогенной лейкемии человека, убиквитин-протеасомная система, убиквитинилирование, фосфорилирование.

DOI: 10.7868/S0132342314060049

ВВЕДЕНИЕ

В клетках эукариот, большая часть внутриклеточных белков расщепляется по убиквитин-протеасомному пути [1]. Белок помечается полиубиквитиновой цепочкой при участии целого каскада убиквитинилирующих ферментов и расщепляется затем 26S протеасомой до пептидов и отдельных мономеров убиквитина.

26S протеасома — это мультисубъединичный белковый комплекс массой примерно 2.5 МДа, который состоит из протеолитического ядра — 20S протеасомы и одного или двух регуляторов 19S. 20S протеасома представляет собой полый цилиндр, состоящий из четырех сложенных в стопку гептамерных колец: два внешних кольца образованы субъединицами α-типа, два внутренних кольца – субъединицами β-типа [2]. У 20S протеасом клеток эукариот субъединицы α-типа отвечают за сборку 20S комплекса и формируют "ворота", через которые помеченный к деградации белок доставляется в протеолитическую камеру, а также обеспечивают взаимодействие 20S протеасомы с регуляторными комплексами и с другими белками, которые, согласно литературным данным, взаимодействуют с протеасомами в случае убиквитиннезависимого протеолиза [3, 4]. Предполагается также существование у субъединиц α-типа специфической эндорибонуклеазной активности [5]. Субъединицы β-типа образуют центральные кольца и протеолитическую полость 20S протеасомы, где осуществляется протеолиз белка. Три из семи субъединиц β-типа, β1, β2 и β5, протеолитически активны по типу каспазы, трипсина и химотрипсина, соответственно. Воздействие ү-интерферона стимулирует экспрестрех дополнительных каталитических сию β-субъединиц (β1i/LMP2, β2i/MECL1 и β5i/LMP7),

Сокращения: AMC – 7-амино-4-метилкумарин; MALDI-ICR – масс-спектрометрия ионно-циклотронного резонанса с матрично-активированной лазерной десорбцией/ионизацией, TEV – Тоbacco Etch Virus.

⁴ Автор для связи (тел.: +7 (812) 297-37-40, факс: +7(812) 297-0341; эл. почта: atsimokha@mail.cytspb.rssi.ru).

называемых иммунными, которые замещают соответствующие конститутивные β-субъединицы, что в свою очередь приводит к изменению продуктов расщепления белкового субстрата — образованию иммуногенных пептидов, выставляемых на молекулах главного комплекса гистосовместимости класса I [6]. У позвоночных обнаружена дополнительная каталитически активная субъединица, названная β5t, которая экспрессируется в кортикальных эпителиальных клетках тимуса и играет роль в селекции Т-киллеров [7].

Регуляторный комплекс протеасом 19S служит для узнавания полиубиквитинилированных белков и подготовки их к деградации в 20S протеасоме [8]. Комплекс 19S имеет молекулярную массу около 1 МДа и состоит из шести АТР-азных (Rpt1–6) и из одиннадцати неАТР-азных (Rpn1–3, Rpn5–12) субъединиц. С развитием новых подходов к очистке и идентификации белков обнаружили новые белки протеасомного регулятора 19S, но пока неясно, какую функцию они несут [9, 10].

20S протеасомы помимо регуляторной частицы 19S могут связывать и другие регуляторные комплексы: РА28 и РА200. Регуляторный комплекс РА28α/β с молекулярной массой около 200 кДа имеет структуру гетерогептамерного кольца и состоит из гомологичных субъединиц РА28α и РА28β, которые индуцируются под действием у-интерферона [11]. Моногептамерный комплекс РА28ү предположительно участвует в процессе деления клетки и в онкогенезе [12]. Регулятор РА200 состоит из одного белка с молекулярной массой 200 кДа и в комплексе с 20S протеасомой участвует в репарации ДНК [13]. Важно отметить, что 20S протеасома, имея один регулятор 19S, может связывать дополнительно РА28- или РА200-регулятор, формируя гибридную протеасому 19S-20S-PA28 или 19S-20S-PA200 [11, 14].

За счет деградации специфических регуляторных белков убиквитин-протеасомная система играет центральную роль в регуляции таких основных клеточных процессов, как клеточная дифференцировка, транскрипция, репарация ДНК, прохождение клеточного цикла, пролиферация, иммунный и воспалительный ответы, апоптоз [2, 5]. Нарушения в убиквитин-протеасомной системе часто коррелируют с возникновением патологических событий, таких как опухолеобразование, метастазирование, воспалительные процессы, нейродегенеративные заболевания [15], вследствие чего компоненты системы рассматриваются как фармацевтические мишени. Так, например, ингибитор протеасом Velcade (бортезомиб или PS341) сегодня успешно используется в лечении онкологических больных [16]. Показано, что Velcade и подобные ему ингибиторы протеасом вызывают апоптоз в быстро пролиферирующих клетках, в то время как нормальные клетки не-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 40 № 6 2014

чувствительны или менее чувствительны к их действию [17]. Оказалось, однако, что регуляция апоптоза протеасомами более тонкая и комплексная и определяется, по-видимому, широким спектром клеточных процессов, протекающих с их участием.

Основными способами регуляции активностей протеасом, как известно, являются модуляция их состава в клетке и посттрансляционные модификации протеасомных белков [15]. Поэтому для понимания функций протеасом в клеточных процессах и способах их регуляции важно исследовать состав протеасом и посттрансляционные модификации протеасомных субъединиц. Несмотря на существование немалого количества протеомных исследований протеасом, стоит отметить, что, во-первых, большинство из них были сосредоточены на 20S протеасомах [18–20] и, вовторых, многие из этих исследований были выполнены на протеасомах из дрожжей.

Ранее показано, что экспрессия в клетках человека линии НЕК293 субъединицы 19S регулятора протеасом Rpn11 (PSMD14), слитой по С-концу с пептидом НТВН, включающим два фрагмента His₆, специфический сайт расщепления TEV-протеазой и сигнальную последовательность для биотинилирования in vivo, позволяет быстро выделять протеасомы высокой степени очистки [21]. Мы полагаем, что выбор авторами этой субъединицы для мечения с целью аффинной очистки комплекса и последующего протеомного анализа не является оптимальным в силу ограничения в наборе субпопуляций протеасом: очищены будут лишь те субпопуляции протеасом, в составе которых присутствует комплекс 19S, исключая свободные 20S протеасомы и 20S протеасомы в комплексе с другими регуляторами (РА28, РА200). Кроме того, популяция очищенных протеасом будет содержать свободные комплексы 19S, которые, как известно, участвуют в регуляции транскрипции независимо от протеолитической функции протеасом [5].

В настоящей работе мы выбрали для мечения субъединицу β7 (PSMB4) 20S протеасомы с целью аффинной очистки всех протеолитически активных субпопуляций протеасом из клеток миелогенной лейкемии человека линии К562. Для протеомного анализа аффинно-очищенных протеасом использовали MALDI-ICR-масс-спектрометрию (масс-спектрометрию ионно-циклотронного резонанса с матрично-активированной лазерной десорбцией/ионизацией).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для очистки протеасом из клеток человека линии K562, β7-субъединица 20S протеасомного комплекса была помечена по *C*-концу пептидом

Рис. 1. Аффинная очистка протеасом из клеток K562, стабильно экспрессирующих меченый белок β 7-HTBH (K562/ β 7-HTB). (*a*) Схематическое представление слитой конструкции β 7-HTBH [21], содержащей последовательности His₆ (H), сайт для расщепления TEV-протеазой (T) сигнальную последовательность для биотинилирования *in vivo* (B). (*б*) Иммунохимическое выявление протеасомных антигенов в комплексе со стрептавидин-биотином после инкубации стрептавидинового носителя с клетками K562, контрольными и K562/ β 7-HTBH. Денатурирующий электрофорез в 13% ПААГ 50 мкг клеточного экстракта из клеток K562 – контрольных (*1*) и K562/ β 7-HTBH (*3*), и белков в комплексе со стрептавидин-биотином после инкубации стрептавидинового носителя с клетками K562 – контрольными (*2*) и K562/ β 7-HTBH (*4*). (*в*) Электрофоретическое разделение белков протеасом, аффинно-очищенных из клеток K562/ β 7-HTBH. Денатурирующий электрофорез в 13% ПААГ 10 мкг очищенных протеасом (*1*). Окраска геля Кумасси G-250, *M* – маркеры мол. масс (MBI Fermentas, Литва). (*г*) Пептидазные активности протеасом, аффинно-очищенных из клеток K562 – контрольных (1) и K562/ β 7-HTB (*2*, 3), и протеасом, очищенных из клеток HEK293 Rpn11-HTBH (*4*) [21]. Для контроля за специфичностью протеасомной активности в реакцию добавлен ингибитор протеасомной активности MG132 (3). Средние значения и стандартные отклонения трех независимых определений флуоресценции освобожденного AMC (100 ед. флуоресценции соответствует освобождению 50 пмоль продукта; концентрация протеасом в пробах составляет 1 мкг.

НТВН (рис. 1а). Ранее показано [21], что экспрессия в клетках НЕК293 протеасомного белка Rpn11 (PSMD14), удлиненного по С-концу таким пептидом, позволяет быстро выделять функционально активные протеасомы с высокой степенью очистки. Эта сложная метка включает два фрагмента His₆, специфический сайт расщепления TEV-протеазой и сигнальную последовательность для биотинилирования *in vivo* (рис. 1*a*). Пептид НТВН, включенный в состав белка, позволяет осуществлять его трехступенчатую очистку: связывание с Ni²⁺-NTA-колонкой за счет гистидиновых последовательностей (шаг 1), элюирование с нее и связывание со стрептавидиновым носителем за счет биотинилированного фрагмента пептида (шаг 2), элюирование с носителя путем отщепления с помощью TEV-протеазы (шаг 3). Данная стратегия очистки была разработана на клетках дрожжей [22], которые содержат большое количество биотинилированных эндогенных белков. В клетках млекопитающих, в отличие от клеток дрожжей, биотинилированные эндогенные белки встречаются редко, поэтому первый шаг очистки можно исключить.

Субъединица β 7 была выбрана по ряду причин. Чтобы гарантировать очистку всех протеолитически активных форм протеасом в комплексе с различными регуляторами, нам необходимо было выбрать субъединицу 20S комплекса. Мы не могли рассматривать на эту роль ни один белок 20S протеасомы α -типа, поскольку, во-первых, эти белки могут находиться в клетке в свободном состоянии, а не только в комплексе с протеасомами [23, 24], и, во-вторых, показано, что мечение субъединицы α 5 (PSMA5) или α 7 (PSMA3) полностью предотвращало присоединение к 20S про-

теасоме регуляторных комплексов [25]. Мы выбрали субъединицу β 7 20S протеасомы, потому что несмотря на то, что белки протеасом β -типа формируют протеолитическую полость 20S протеасомы, данная субъединица, во-первых, не является каталитически активной, и во-вторых, по сравнению со всеми другими субъединицами β -типа имеет более короткое время жизни [26].

Временные трансфекции часто приводят к сверхэкспрессии исследуемого гена, на несколько порядков превышающей его физиологический уровень в клетке. Чтобы свести к минимуму сверхэкспрессию β7-НТВН, мы использовали ретровирусный способ доставки конструкции в клетки, для чего трансфицировали в клетки линии HEK293 вектор pQCXIP-β7-HTBH, а также плазмиды, необходимые для сборки вирусов. Через 2 сут после трансфекции, собранными вирусами, несущими нашу конструкцию, заражали клетки линии К562, из которых после 7 сут селекции при концентрации пуромицина 5 мкг/мл, получали стабильную клеточную линию. Уровень экспрессии меченого белка в прошедших селекцию клетках К562, экспрессирующих белок β7-НТВН (К562/β7-НТВН), показан на рис. 1б. С помощью антител против биотина мы наблюдали сигнал на уровне предсказанной подвижности белка, меченного НТВН, в системе одномерного SDS-электрофореза (43 кДа).

Следующим этапом стал анализ возможности очистки протеасом за счет аффинного связывания стрептавидина с биотинилированным участком пептида НТВН. К экстракту контрольных клеток К562 и клеток, экспрессирующих белок β7-HTBH, добавляли стрептавидин-агарозу, которая за счет высокого сродства к биотину связывала меченую протеасомную субъединицу. Мы наблюдаем сигнал на уровне предсказанной подвижности меченого белка в системе одномерного SDS-электрофореза в клеточном лизате и во фракции со стрептавидиновым носителем только в клетках К562/β7-НТВН (рис. 1б). Мы показали присутствие протеасомных антигенов в полученных нами препаратах аффинно-очищенных протеасом, несущих в себе меченную субъединицу 20S комплекса, и отсутствие их в комплексе со стрептавидином, инкубированным с клеточным лизатом контрольных клеток К562 (рис. 16), что подтверждает высокую специфичность одностадийной очистки протеасом за счет реакции стрептавидин-биотин. Картина распределения протеасомных белков в системе электрофореза в присутствии SDS показана на рис. 1в и аналогична представленной ранее [21].

Ранее показано, что мечение субъединицы протеасом Rpn11 пептидом HTBH не влияет на протеолитическую функцию очищенной протеасомы [21]. Чтобы доказать отсутствие влияния

пептида НТВН в комплексе с β 7 на активность протеасом, мы определили пептидазную активность химотрипсинового, трипсинового и каспазаподобного типов очищенных протеасом по гидролизу флуорогенных олигопептидов, специфичных для всех трех каталитических центров протеасом (рис. 1г). В качестве контроля за специфичностью пептидазной активности мы использовали протеасомный пептидный ингибитор MG132 (Enzo Life Sciences, США). Важно отметить, что мы не наблюдали никакой пептидазной активности в отрицательном контроле. Согласно полученным результатам, протеасомы, содержащие меченый белок β7-НТВН, сохраняют высокую пептидазную активность по трем типам. Мы не можем исключить, однако, тот факт, что несущие метку протеасомы могут иметь некоторые функциональные отличия по сравнению с протеасомами в контрольных клетках, несмотря на отсутствие заметного влияния экспрессии меченого протеасомного белка на рост и жизнедеятельность клеток.

Чтобы охарактеризовать субъединичный состав и посттрансляционные модификации протеасом, был проведен MALDI-ICR-масс-спектрометрический анализ протеасом, аффинно-очищенных из клеток K562/β7-HTBH. Схема эксперимента представлена на рис. 2. Клетки линии К562, экспрессирующие β7-НТВН, промывали охлажденным PBS и лизировали в буфере, содержащем АТР. В течение ночи клеточный экстракт инкубировали со стрептавидин-агарозой, после чего протеасомы элюировали с аффинного носителя с помощью буфера, содержащего TEVпротеазу. Белки протеасом (10 мкг) разделяли в системе SDS-электрофореза. Белки в геле визуализировали окраской Кумасси, после чего окрашенные полоски вырезали из геля в количестве 43 штук (рис. 3). Белки, содержащиеся в полосках геля, подвергали воздействию трипсина и анализировали методом MALDI-ICR-масс-спектрометрии.

Для каждого из 43 образцов были получены масс-спектры, один из которых соответствующий пробе 8, представлен на рис. 4. Масс-спектры были обработаны с помощью программного пакета FTDocViewer (Varian, США) и созданы пик-листы в txt-формате. При помощи программы Mascot методом "пептидный фингерпринт" провели поиск в базе данных, результаты которого представлены в табл. 1. Идентифицированы все 14 субъединиц 20S протеасомы: 7 субъединиц α-типа и 7 субъединиц β-типа. Показано наличие 6 АТР-азных белков и 13 неАТР-азных субъединиц регулятора 19S. Среди выявленных нами неАТР-азных субъединиц наблюдаются два дополнительных к общеизвестным белкам комплекса 19S белки Rpn13 (ADRM1) и Gankyrin (PSMD10).

Рис. 2. Схематическое изображение этапов эксперимента, включая очистку протеасом из клеток, разделение протеасомных белков в системе денатурирующего электрофореза и масс-спектрометрический анализ подготовленных проб.

В дополнение к идентифицированным белкам 26S протеасомы, обнаружены белки РА28 α , РА28 γ и РА200. Интересно, что нами обнаружена недавно описанная новая каталитическая субъединица β 5t [27], которая, как полагают, экспрессируется исключительно в клетках тимуса. Чтобы утверждать, однако, что субъединица β 5t действительно экспрессируется в клетках К562, необходимо доказать это иммуноанализом с использованием специфических антител.

В популяции протеасом, аффинно-очищенных из клеток К562/β7-НТВН, мы не обнаружили иммунорегуляторную субъединицу протеасом РА286, хотя существуют свидетельства того, что этот белок не только экспрессируется в клетках К562, но может вместе с РА28α также участвовать в регуляции эндорибонуклеазной активности протеасом [28]. Мы полагаем, что наблюдаемое расхождение в данных может быть связано с тем. что экспрессия этих белков в клетках невысока, а многие белки протеасом имеют близкую молекулярную массу, поэтому одномерного электрофоретического разделение белков протеасом перед масс-спектрометрическим анализом может быть недостаточно для идентификации минорных белков в общей протеасомной популяции.

В недавних протеомных исследованиях обнаружены некоторые эндогенные белки, которые связываются с 26S протеасомами и, как авторы полагают, влияют на их функцию [22, 29, 30]. Показано, что с протеасомами из клеток дрожжей, мыши, человека ассоциированы такие белки, как компоненты убиквитин-протеасомной системы. шапероны, белки цитоскелета и участники клеточного метаболизма [22, 29-33]. Важно подчеркнуть, что присутствие соли в процессе очистки протеасом мешает идентификации белков, ассоциированных с аффинно-очищенными протеасомами [32]. В настоящей работе используемый нами подход снятия материала с аффинного носителя с помощью специфического отщепления TEV-протеазой, с одной стороны, снижал вероятность присутствия в элюате неспецифически связавшихся с носителем и других биотинилированных белков. С другой стороны, использование минимального количества соли предотвращало потерю ассоциированных с протеасомами белков за счет белокбелковых взаимодействий, что позволяло повысить вероятность идентификации большего числа ассоциированных с протеасомами белков.

Как и в упомянутых выше работах, мы обнаружили, согласно данным MALDI-ICR-масс-спектрометрии, что с протеасомами, аффинно-очищенными из клеток К562/β7–НТВН, ассоциированы белки-компоненты убиквитин-протеасомной системы, шапероны, белки цитоскелета и участники метаболизма (табл. 2). Во фракции аффинноочищенных протеасом оказались такие вовлеченные в убиквитин-протеасомную систему белки, как убиквитин, деубиквитинилирующий фермент UCH37 и убиквитин-лигаза E3A. Присутствие шаперонов в списке ассоциированных с протеа-

сомами белков подтверждают все из упомянутых выше протеомных исследований протеасом, и объясняется это тем, что шапероны обеспечивают правильную сборку самих протеасом [2] и облегчают взаимодействие белков-мишеней с протеасомами [31]. Факт идентификации в этом списке белков цитоскелета и участников метаболизма можно объяснить контаминацией в процессе выделения и очистки протеасом в силу повышенного содержания этих белков в клетке. Эти белки или некоторые из них могут также являться субстратами протеасом, предназначенными для деградации как по убиквитин-зависимому, так и по убиквитин-независимому пути, и взаимодействуют с протеасомами через полиубиквитин или за счет субъединицы α7, которая связывает протеасомные субстраты при убиквитин-независимом протеолизе [34, 35].

Интересно, что есть ряд ранних работ, которые утверждают, что протеасомы могут быть связаны в клетке с фибриллярным актином [36, 37], причем фибриллярный актин может способствовать сборке предварительно диссоциированной 20S протеасомы [38]. Чтобы однозначно ответить на вопрос о причинах присутствия в списке ассоциированных с протеасомами белков цитоскелета и участников метаболизма и определить функциональное значение наблюдаемого взаимодействия протеасом с этими белками, в дальнейших исследованиях, возможно, потребуется применение комплексного подхода при использовании ингибиторов протеасом для увеличения клеточного пула убиквитинилированных белков, фракционирование клеточных компартментов, иммуно-анализ с использованием специфических антител и др.

Известно, что ряд субъединиц протеасом в клетках могут нести модификацию на N-конце [21, 39–41]. Однако данных об этих модификациях для субъединиц протеасом в клетках человека различной тканеспецифичности недостаточно. Мы показали, что из 12 субъединиц протеасом, имеющих модификацию на N-конце (табл. 3), только четыре субъединицы (α 5, β 4, Rpt3 и Rpt5) ацетилированы по N-концевому остатку метионина. Восемь субъединиц (α 2, α 4, α 7, β 3, β 6, Rpt4, Rpt6 и Rpn6) ацетилированы по второй аминокислоте после удаления N-концевого остатка метионина.

Интересно отметить, что ATP-азная субъединица регулятора 19S протеасом Rpt2 миристинилирована на *N*-конце (табл. 3), что согласуется с литературными данными [21, 39, 40]. Функциональное значение миристинилирования субъединицы Rpt2 неясно, но в силу постояннства данной модификации для протеасом — от дрожжей до человека, предполагается участие ее во взаимодействии 26S протеасомы с мембранными белками.

Рис. 3. Электрофоретическое разделение белков протеасом, аффинно-очищенных из клеток К562/β7-НТВН. Описание аналогично описанию рис 1*в*. Показано деление дорожки геля, содержащей визуализированные белки протеасом, на 43 полоски, которые были вырезаны для дальнейшего масс-спектрометрического анализа.

Убиквитинилирование субъединиц протеасом мало изучено, существует всего несколько работ, которые показали наличие у протеасом этой посттрансляционной модификации [24, 33, 42]. Кроме того, в результате глобального скрининга убиквитинилированных эндогенных белков были обнаружены убиквитинилированные протеасомные белки [43, 44]. Однако биологическое значение этой протеасомной модификации совершенно не исследовано. Предполагают, что убиквитинилирование служит не только сигналом к расщеплению белка по убиквитин-зависимому механизму [45],

Рис. 4. Масс-спектры белков, выделенных из полоски геля под номером 8 на рис. 3. По горизонтали – значения масса/заряд, по вертикали – интенсивность, отн. ед.

но и может регулировать каталитические активности белков [24, 46], внутриклеточную локализацию белков [47] и белок-белковые взаимодействия [48]. Мы обнаружили в общей сложности 49 сайтов убиквитинилирования на 23 субъединицах протеасом, и 17 из этих сайтов ранее не были описаны (табл. 3).

		J						
Howen	Hoven Gentra	Название белка		Назва-	Marra	Цисто	Доля	Точность
пробы	B Uniprot (SwissProt)	полное	альтерна- тивное	ние гена	белка, кДа	пептидов	покрытия белка, %	измерения масс, ррт
		20S riporeacoma						
8	P60900 (PSA6_HUMAN)	Proteasome subunit alpha type-6	α1	PSMA6	25.4	17	56	2.24
5	P25787 (PSA2_HUMAN)	Proteasome subunit alpha type-2	α2	PSMA2	25.8	16	62	1.9
10	P25789 (PSA4_HUMAN)	Proteasome subunit alpha type-4	α3	PSMA4	29.5	10	32	1.47
8	014818 (PSA7_HUMAN)	Proteasome subunit alpha type-7	α4	PSMA7	27.9	24	77	1.43
8	P28066 (PSA5_HUMAN)	Proteasome subunit alpha type-5	$\alpha 5$	PSMA5	26.5	8	29	1.49
12	P25786 (PSA1_HUMAN)	Proteasome subunit alpha type-1	α6	PSMA1	29.6	18	72	1.98
10	P25788 (PSA3_HUMAN)	Proteasome subunit alpha type-3	$\alpha 7$	PSMA3	28.3	14	47	1.87
3	P28072 (PSB6_HUMAN)	Proteasome subunit beta type-6	β1	PSMB6	23.3	5	21	1.63
8	Q99436 (PSB7_HUMAN)	Proteasome subunit beta type-7	β2	PSMB7	30	8	20	1.08
4	P49720 (PSB3_HUMAN)	Proteasome subunit beta type-3	β3	PSMB3	22.9	6	41	2.17
2	P49721 (PSB2_HUMAN)	Proteasome subunit beta type-2	β4	PSMB2	22.8	8	36	0.97
1	P28074 (PSB5_HUMAN)	Proteasome subunit beta type-5	β5	PSMB5	22.5	18	52	2.3
4	P20618 (PSB1_HUMAN)	Proteasome subunit beta type-1	β6	PSMB1	26.5	11	52	2.3
9	P28070 (PSB4_HUMAN)	Proteasome subunit beta type-4	β7	PSMB4	24.4	13	57	2.31
	<u> </u>	Регулятор протеасом	19S	-		-	-	
25	P35998 (PRS7_HUMAN)	26S protease regulatory subunit 7	Rpt1	PSMC2	48.6	26	56	2.25
29	P62191 (PRS4_HUMAN)	26S protease regulatory subunit 4	Rpt2	PSMCI	49.2	20	51	2.23
26	P43686 (PRS6B_HUMAN)	26S protease regulatory subunit 6B	Rpt3	PSMC4	47.4	20	58	2.48
22	P62333 (PRS10_HUMAN)	26S protease regulatory subunit 10B	Rpt4	PSMC6	44.2	15	46	2.08
25	P17980 (PRS6A_HUMAN)	26S protease regulatory subunit 6A	Rpt5	PSMC3	49.2	23	58	2.48

БИООРГАНИЧЕСКАЯ ХИМИЯ том 40 № 6 2014

МАСС-СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗ АФФИННО-ОЧИЩЕННЫХ ПРОТЕАСОМ

727

Номер	в номен белика	Название белка		Назва-	Marca	Ииспо	Доля	Точность
пробы	B Uniprot (SwissProt)	полное	альтерна- тивное	ние гена	масса белка, кДа	пептидов	покрытия белка, %	измерения масс, ррт
23	P62195 (PRS8_HUMAN)	26S protease regulatory subunit 8	Rpt6	PSMC5	45.6	19	54	2.21
36	Q13200 (PSMD2_HUMAN)	26S proteasome non-ATPase regulatory subunit 2	Rpn1	PSMD2	100.2	42	50	2.01
38	Q99460 (PSMD1_HUMAN)	26S proteasome non-ATPase regulatory subunit 1	Rpn2	PSMD1	105.8	40	40	2.45
31	043242 (PSMD3_HUMAN)	26S proteasome non-ATPase regulatory subunit 3	Rpn3	PSMD3	61	41	59	2.49
27	000232 (PSD12_HUMAN)	26S proteasome non-ATPase regulatory subunit 12	Rpn5	PSMD12	52.9	17	36	2.19
24	000231 (PSD11_HUMAN)	26S proteasome non-ATPase regulatory subunit 11	Rpn6	PSMD11	47.5	14	37	2.14
22	Q15008 (PSMD6_HUMAN)	26S proteasome non-ATPase regulatory subunit 6	Rpn7	PSMD6	45.5	22	50	2.27
19	P51665 (PSMD7_HUMAN)	26S proteasome non-ATPase regulatory subunit 7	Rpn8	PSMD7	37	13	46	2.31
21	Q9UNM6 (PSD13_HUMAN)	26S proteasome non-ATPase regulatory subunit 13	Rpn9	PSMD13	43	14	43	1.74
27	P55036 (PSMD4_HUMAN)	26S proteasome non-ATPase regulatory subunit 4	Rpn10/S5A	PSMD4	40.7	11	30	2.44
16	000487 (PSDE_HUMAN)	26S proteasome non-ATPase regulatory subunit 14	Rpn11	PSMD14	34.6	8	35	1.31
25	P48556 (PSMD8_HUMAN)	26S proteasome non-ATPase regulatory subunit 8	Rpn12	PSMD8	39.6	3	11	1.14
23	Q16186 (ADRM1_HUMAN)	Proteasomal ubiquitin receptor ADRM1	Rpn13	ADRMI	42.2	4	15	5.21
3	075832 (PSD10_HUMAN)	26S proteasome non-ATPase regulatory subunit 10	Gankyrin	PSMD10	24.4	2	17	7.12
	-	Другие белки протеасо	MO	-				
14	Q8TAA3 (PSA7L_HUMAN)	Proteasome subunit alpha type-7-like	α4s	PSMA8	28.5	S	22	1.86
20	A5LHX3 (PSB11_HUMAN)	Proteasome subunit beta type-11	β5t	PSMB11	32.5	2	12	5.63
31	Q06323 (PSME1_HUMAN)	Proteasome activator complex subunit 1	$PA28\alpha$	PSMEI	28.7	6	27	2.44
13	P61289 (PSME3_HUMAN)	Proteasome activator complex subunit 3	$PA28\gamma$	PSME3	29.5	3	17	3.11
42	Q14997 (PSME4_HUMAN)	Proteasome activator complex subunit 4	PA200	PSME4	211.3	39	21	2.07

БИООРГАНИЧЕСКАЯ ХИМИЯ том 40 № 6 2014

728

Таблица 1. Окончание

АРТАМОНОВА и др.

Номер пробы	Homep белка в Uniprot (SwissProt)	Название белка	Название гена	Масса белка, кДа	Число пептидов	Доля покрытия белка, %	Точность измерения масс, ppm
		Белки убиквитин-протеасомной сист	embi				
43	P62979 (RS27A_HUMAN)	Ubiquitin-40S ribosomal protein S27a	RPS27A	17.9	5	27	1.03
43	P62987 (RL40_HUMAN)	Ubiquitin-60S ribosomal protein L40	UBA52	14.7	4	36	1.87
17	Q9Y5K5 (UCHL5_HUMAN)	Ubiquitin carboxyl-terminal hydrolase isozyme L5/UCH37	UCHL5	37.6	3	15	1.09
34	Q05086 (UBE3A_HUMAN)	Ubiquitin-protein ligase E3A	UBE3A	100.7	4	5	2.72
	-	Шапероны	-	-	-	-	
30	P10809 (CH60_HUMAN)	60 kDa heat shock protein, mitochondrial	HSPDI	61.1	∞	18	2.5
32	P11142 (HSP7C_HUMAN)	Heat shock cognate 71 kDa protein	HSPA8	70.9	18	31	1.89
33	P11021 (GRP78_HUMAN)	78 kDa glucose-regulated protein	HSPA5	72.3	17	36	2.05
37	P08238 (HS90B_HUMAN)	Heat shock protein HSP 90-beta	HSP90AB1	83.3	14	23	2.43
32	P08107 (HSP71_HUMAN)	Heat shock 70 kDa protein 1A/1B	HSPAIA	70.1	10	17	1.8
32	P38646 (GRP75_HUMAN)	Stress-70 protein, mitochondrial	HSPA9	73.7	8	16	1.95
	-	Белки цитоскелета	_	-	-	-	
22	P60709 (ACTB_HUMAN)	Actin, cytoplasmic 1	ACTB	41.7	14	45	2.27
28	Q9BQE3 (TBA1C_HUMAN)	Tubulin alpha-1C chain	TUBAIC	49.9	٢	26	1.63
28	P07437 (TBB5_HUMAN)	Tubulin beta chain	TUBB	49.7	8	26	2.17
42	043707 (ACTN4_HUMAN)	Alpha-actinin-4	ACTN4	104.9	39	21	2.07
	_	Белки-участники метаболизма	_	-	-	-	
25	P07864 (LDHC_HUMAN)	L-Lactate dehydrogenase C chain	ГДНС	36.3	ю	6	2.22
29	Q9HCC0 (MCCB_HUMAN)	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial	MCCC2	61.3	12	27	1.23

Таблица 2. Ассоциированные с протеасомами белки, детектированные с помощью MALDI-ICR-масс-спектрометрии

Название белка	Название гена	А. к.	Последовательность пептида
	Λ	-Концевое ацетилиро	рвание
α2	PSMA2	A2	acetyl-AERGYSFSLTTFSPSGK
α4	PSMA7	S2	acetyl-SYDR
α5	PSMA5	M1	acetyl-MFLTR
α7	PSMA3	S2	acetyl-SSIGTGYDLSASTFSPDGR
β3	PSMB3	S2	acetyl-SIMSYNGGAVMAMK
β4	PSMB2	M1	acetyl-MEYLIGIQGPDYVLVASDR
β6	PSMB1	L2	acetyl-LSSTAMYSAPGR
Rpt3	PSMC4	M1	acetyl-MEEIGILVEK
Rpt4	PSMC6	A2	acetyl-ADPRDKALQDYR
Rpt5	PSMC3	M1	acetyl-MNLLPNIESPVTR
Rpt6	PSMC5	A2	acetyl-ALDGPEQMELEEGKAGSGLR
Rpn6	PSMD11	A2	acetyl-AAAAVVEFQR
	<i>N</i> -K	онцевое миристинили	ирование
Rpt2	PSMC1		Myr-GQSQSGGHGPGGGK
	1	Убиквитинилирован	ние
α1	PSMA6	K45, <u>K54</u> , K55	GKDCAVIVTQKK
		K181, K182, <u>K184</u>	QTESTSFLE KK VK
α2	PSMA2	K70	VEPITKHIGLVYSGMGPDYR
α3	PSMA4	K238	EVEQLIKK
α4	PSMA7	<u>K27</u> , K28	AITVFSPDGHLFQVEYAQEAV KK
		<u>K166</u> , K174	GAKSVREFLEK
α7	PSMA3	<u>K58</u> , K65	LVLSKLYEEGSNK
β3	PSMB3	K15, K17	SIMSYNGGAVMAMKGK
β5	PSMB5	<u>K130, K140</u>	NKERISVAAASK
β6	PSMB1	K164	DSFK
		<u>K240</u>	EGIREETVSLRK
β7	PSMB4	K240	DARSYNRFQIATVTEK
Rpt1	PSMC2	K222	GVLLFGPPGTG K TLCAR
		K415, K418	DFLEAVNKVIK
Rpt2	PSMC1	K237	TLLAKAVANQTSATFLR
Rpt3	PSMC4	K255	DVFRLAK
Rpt4	PSMC6	K314, K322	LDIL K IHAGPIT K
		K383, <u>K387</u>	LESKLDYKPV
Rpt5	PSMC3	K125	CAVIK
Rpt6	PSMC5	K156	VPDSTYEMIGGLD K
Rpn1	PSMD2	K39, K41, K50	DAGDKDKEQELSEEDK
		K350	VPDDIY K THLENNR
		K754	LAAMLRQLAQYHAK
Rpn2	PSMD1	K413	FTATASLGVIHK
Rpn3	PSMD3	<u>K209</u>	ALDLVAAKCYYYHAR
Rpn5	PSMD12	K52	LQEVIETLLSLEKQTR
Rpn6	PSMD11	K59	EQSILELGSLLAK
		<u>K205</u>	AALTSARTTANAIYCPPK

Таблица 3. Выявленные с помощью MALDI-ICR-масс-спектрометрии посттрансляционные модификации протеасомных белков*

Название белка	Название гена	А. к.	Последовательность пептида
Rpn7	PSMD6	<u>K126</u> , K130	KTYDKTVALGHR
ΡΑ28α	PSME1	<u>K232, K236</u>	NAYAVLYDIIL K NFE K
PA200	PSME4	<u>K89, K92</u>	KFSK
		<u>K1579</u>	TIL K WLMASAGR
	'	Фосфорилировани	ie
α1	PSMA6	<u>T52</u>	DCAVIVTQKKVPDK
α2	PSMA2	<u>T48</u>	AANGVVLATEKKQK
α6	PSMA1	S54	RAQSELAAHQKK
α7	PSMA3	<u>887</u>	SLADIAR
Rpt1	PSMC2	<u>T220, T223</u>	GVLLFGPPGTGKTLCAR
Rpt2	PSMC1	<u>8422</u>	SKENVLYKK
		T53, <u>T56</u>	LPLVTPHTQCRLKLLK
Rpt4	PSMC6	<u>T321</u>	LDILKIHAGPITK
		<u>S382</u> , Y386	KLESKLDYKPV
Rpt5	PSMC3	<u>S281, T293</u>	EKAPSIIFIDELDAIGTK
Rpt6	PSMC5	<u>S39</u>	IEELQLIVNDKSQNLR
Rpn1	PSMD2	<u>Y751</u>	LAAMLRQLAQYHAK
Rpn7	PSMD6	<u>S27</u>	FLLSLPEHR

* А. к. – аминокислотный остаток в составе белка. Подчеркиванием выделены впервые обнаруженные нами сайты модифицирования белков. Жирным шрифтом указано положение аминокислотного остатка, несущего выявленную модификацию.

Фосфорилирование субъединиц протеасом наиболее хорошо изучено [19, 21, 49] и играет важную роль в сборке 26S протеасомных комплексов, в их стабильности, регулирует каталитические функции протеасом и участвует в регуляции внутриклеточной локализации [50, 51]. В настоящей работе определены 17 сайтов фосфорилирования на 11 субъединицах протеасом, причем 14 из этих сайтов выявлены нами впервые (табл. 3).

Несмотря на то, что биологические функции сайтов фосфорилирования и убиквитинилирования, идентифицированные нами в протеасоме, еще предстоит определить, результаты работы будут полезны для будущих функциональных исследований, направленных на выяснение роли этих посттрансляционных модификаций в функции протеасом и механизмах ее регуляции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Клетки почки эмбриона человека линии НЕК293 и миелогенной лейкемии человека линии К562, полученные из Российской коллекции клеточных культур (Институт цитологии РАН), культивировали при 37°С в средах DMEM и RPMI 1640, соответственно, содержащих 10% эмбриональной телячьей сыворотки (Invitrogen, США), в присутствии пенициллина и стрептомицина или гентамицина.

БИООРГАНИЧЕСКАЯ ХИМИЯ том 40 № 6 2014

Экспрессионную конструкцию получили на основе вектора pQCXIP (Clontech, США), в который по сайтам NotI и EcoRI вставлена последовательность hPSMD14-HTBH (любезно предоставлен д-ром Л. Хуангом (Dr. L. Huang)). Вместо последовательности hPSMD14 по сайтам рестрикции NotI и PacI мы вставили последовательность hPSMB4 (β 7), которую амплифицировали с кДНК клеток HEK293 с помощью праймеров (5'–3'): TTA<u>CGGCCG</u>AGAC-CATGGAAGCGTTTTTGGGGG и CCC<u>TTAAT-TAA</u>TTCAAAGCCACTGATCATGTG, включающих в себя сайты рестрикции для EagI и PacI (подчеркнуты). Наличие и точность вставки в векторе определяли с помощью рестрикции и итоговым секвенированием.

Трансфекцию клеток линии НЕК293 проводили с помощью реагента TurboFect (MBI Fermentas, Литва), согласно рекомендациям фирмы-изготовителя, одновременно вводя плазмиды, необходимые для сборки вирусной частицы (любезно предоставлены д-ром Н.А. Барлевым), и ретровирусную плазмиду pQCXIP, кодирующую β7-НТВН. Через 24 ч после постановки трансфекции производили замену трансфекционной среды на новую. Супернатант, содержащий вирусные частицы, собирали в течение последующих 2 сут.

Инфекцию клеток линии К562 проводили ретровирусами, содержащими β7-НТВН, согласно протоколу фирмы-изготовителя (Clontech Laboratores, США). Через 16 ч после инфицирования производили замену трансдукционной среды на новую, содержащую антибиотик пуромицин (Invitrogen, США). Селекцию клеток проводили в течение 7 сут.

Клеточный экстракт готовили из клеток К562, контрольных и экспрессирующих меченый белок β 7-НТВН (К562/ β 7-НТВН). Клетки промывали холодным PBS и лизировали в буфере A (50 мМ Na-фосфат, pH 7.5, 100 мМ NaCl, 10% глицерин, 5 мМ ATP, 1 мМ DTT, 5 мМ MgCl₂, 0.5% Nonidet P-40, ингибиторы протеаз) в течение 30 мин при 4°C. Клеточные фрагменты удаляли центрифугированием при 13 тыс. об/мин в течение 30 мин при 4°C.

Вестерн-блотинг белков проводили по стандартной методике. Белки фракционировали в денатурирующем 13% ПААГ [52]. Полученные фракции электрофоретически переносили на PVDF-фильтры (Bio-Rad Laboratories, США) в буфере, содержащем 25 мМ Трис-НСІ, 190 мМ глицин, 0.05% SDS, 10% метанола, pH 7.3. Мембрану отмывали в буфере PBS и блокировали центры неспецифического связывания антител 2.5% раствором бычьего сывороточного альбумина (ICN, США) или 5% обезжиренным молоком в этом же буфере. Избыток блокирующего агента отмывали буфером PBS, и мембрану инкубировали с конъюгированными с пероксидазой хрена антителами против биотина (Cell Signaling, США) и (или) со специфическими антителами против соответствующих субъединиц 26S протеасомы Rpn7, α5 и β7 (Enzo Life Sciences, США). Использовали вторичные антитела, конъюгированные с пероксидазой хрена (Sigma-Aldrich, США), пероксидазу выявляли с помощью кита SuperSignal (Thermo Scientific, CIIIA).

Протеасомы выделяли в соответствии с методикой, описанной ранее [21]. К клеточному экстракту клеток К562/β7-НТВН добавляли стрептавидин-агарозу (Thermo Scientific, США) и инкубировали в течение ночи при 4°C при постоянном перемешивании. Далее белки в комплексе со стрептавидин-агарозой осаждали центрифугированием и промывали последовательно 20 объемами лизирующего буфера, 10 объемами буфера TEB (50 мМ Трис-HCl, pH 7.5, 10% глицерин). Далее протеасомы элюировали, со стрептавидинагарозы двумя объемами буфера ТЕВ в присутствии 0.1% TEV-протеазы (Sigma-Aldrich, США) в течение 2 ч при температуре 30°С и концентрировали с применением центрифужных фильтров Amicon Ultra-0.5 (Millipore, CIIIA).

Пептидазную активность протеасом химотрипсин-, трипсин- и каспаза-подобных типов определяли по гидролизу флуорогенных пептидов Suc-Leu-Leu-Val-Tyr-7-амино-4-метилкумарин (AMC), Ac-Arg-Leu-Arg-AMC и Z-Leu-Leu-Glu-AMC (Enzo Life Sciences, США), соответственно. Для этого 4 нмоль субстрата инкубировали с 1 мкг протеасом в течение 45 мин при температуре 37° С в буферном растворе, содержащем 50 мМ Трис-HCl, pH 7.5, 1 мМ MgCl₂, 10 мМ KCl, 1 мМ DTT, 5 мМ ATP. Реакцию останавливали, добавляя к реакционному раствору равный объем смеси 70 мМ уксусной кислоты, 100 мМ хлорацетата натрия и 30 мМ ацетата натрия. Концентрацию продукта гидролиза AMC определяли на флуориметре VersaFluor (Bio-Rad Laboratories, США), измеряя экстинкцию и эмиссию при длинах волн 365 и 440 нм соответственно [53].

Приготовление проб для масс-спектрометрического анализа. После электрофоретического разделения протеасомных белков и окрашивания Кумасси G250 полоски геля, соответствующие белковым полосам (рис. 3), вырезали и промывали для удаления красителя в 40% растворе ацетонитрила в 100 мМ водном бикарбонате аммония в течение 15 мин при 37°С. После удаления раствора, кусочки геля обезвоживали инкубацией в течение 10 мин в ацетонитриле, затем, удалив ацетонитрил, пробы высушивали. К высушенным образцам добавляли раствор модифицированного трипсина (Promega, США) в 50 мМ растворе бикарбоната аммония с концентрацией 15 мкг/мл и инкубировали сначала в течение 30 мин на льду, затем в течение 4 ч при 37°С. Трипсинолиз останавливали добавлением к раствору 0.5% TFA в 10% растворе водного ацетонитрила (в соотношении 2:1 к раствору трипсина). Надгелевый раствор использовали для получения масс-спектров.

Для приготовления образцов для масс-спектрометрии непосредственно на мишени смешивали 0.7 мкл раствора белкового образца и 0.35 мкл раствора 2,5-дигидроксибензойной кислоты (Sigma-Aldrich, США) в концентрации 20 мг/мл в 30% водном ацетонитриле в присутствии 0.1% TFA, полученную смесь высушивали на воздухе.

Масс-спектры были получены на ионно-циклотронном масс-спектрометре ионно-циклотронного резонанса с матрично-активированной лазерной десорбцией/ионизацией Varian 902-MS (Varian, США) со сверхпроводящим магнитом 9.4 Тесла, в режиме положительных ионов. Для облучения образца использовалась третья гармоника Nd: YAG-лазера (355 нм). Точность измеренных моноизотопных масс после докалибровки по пикам автолиза трипсина (842.5094 Да) и кератина (2383.9525 Да) составляла менее 2.5 ррт. Спектры получали в диапазоне масс 500–4500 *m/z* (масса/заряд), выбирая мощность лазера, оптимальную для достижения наилучшего разрешения.

Идентификацию белков осуществляли при помощи программы Mascot (www.matrixscience.com). Масс-спектры были обработаны с помощью программного пакета FTDocViewer (Varian, США) и созданы пик-листы в txt-формате. При помощи

программы Mascot методом "пептидного фингерпринта" проводили поиск в базе данных SwissProt среди белков Homo sapiens с указанной выше точностью. Полученные результаты приведены в табл. 1 и 2.

БЛАГОДАРНОСТИ

Мы благодарим д-ра Л. Хуанг (Калифорнийский университет, США) – Dr. L. Huang (University of California, USA) за генетическую конструкцию pQCXIP-hRpn11-HTBH, д-ра Н.А. Барлева (Университет Лестера, Великобритания) – Dr. N. Barlev (University of Leicester, UK) за смесь плазмид для сборки ретровирусной частицы. Работа выполнена при финансовой поддержке Российского Научного Фонда (проект 14-14-00718) и с использованием оборудования ЦКП "Аналитический центр нано- и биотехнологий ГОУ СПбГПУ" на базе ФГБОУ ВПО "СПбГПУ" при финансовой поддержке Минобрнауки России.

СПИСОК ЛИТЕРАТУРЫ

- Ciechanover A., Schwartz A. L. // Biochim. Biophys. Acta. 2004. V. 1695. P. 3–17.
- 2. Цимоха А. С. // Цитология. 2010. Т. 52. С. 271-300.
- 3. Touitou R., Richardson J., Bose S., Nakanishi M., Rivett J., Allday M. J. // EMBO J. 2001. V. 20. P. 2367– 2375.
- Zhang M., Pickart C. M., Coffino P. // EMBO J. 2003. V. 22. P. 1488–1496.
- Konstantinova I. M., Tsimokha A. S., Mittenberg A. G. // Int. Rev. Cell Mol. Biol. 2008. V. 267. P. 59–124.
- Kloetzel P. M. // Biochim. Biophys. Acta. 2004. V. 1695. P. 225–233.
- Murata S., Sasaki K., Kishimoto T., Niwa S., Hayashi H., Takahama Y., Tanaka K. // Science. 2007. V. 316. P. 1349–1353.
- Mittenberg A. G., Moiseeva T. N., Barlev N. A. // Front. Biosci. 2008. V. 13. P. 7184–7192.
- Qiu X. B., Ouyang S. Y., Li C. J., Miao S., Wang L., Goldberg A. L. // EMBO J. 2006. V. 25. P. 5742–5753.
- Sone T., Saeki Y., Toh-e A., Yokosawa H. // J. Biol. Chem. 2004. V. 279. P. 28807–28816.
- Tanahashi N., Murakami Y., Minami Y., Shimbara N., Hendil K. B., Tanaka K. // J. Biol. Chem. 2000. V. 275. P. 14336–14345.
- 12. *Gao X., Li J., Pratt G., Wilk S., Rechsteiner M. //* Arch. Biochem. Biophys. 2004. V. 425. P. 158–164.
- 13. Ustrell V., Pratt G., Gorbea C., Rechsteiner M. // Methods Enzymol. 2005. V. 398. P. 321–329.
- Schmidt M., Haas W., Crosas B., Santamaria P.G., Gygi S.P., Walz T., Finley D. // Nat. Struct. Mol. Biol. 2005. V. 12. P. 294–303.
- Schmidt M., Finley D. // Biochim. Biophys. Acta. 2014. V. 1843. P. 13–25.
- 16. Teicher B.A., Ara G., Herbst R., Palombella V.J., Adams J. // Clin. Cancer. Res. 1999. V. 5. P. 2638–2645.

- 17. *Naujokat C., Hoffmann S. //* Lab. Invest. 2002. V. 82. P. 965–980.
- Schmidt F., Dahlmann B., Janek K., Kloss A., Wacker M., Ackermann R., Thiede B., Jungblut P.R. // Proteomics. 2006. V. 6. P. 4622–4632.
- Claverol S., Burlet-Schiltz O., Girbal-Neuhauser E., Gairin J.E., Monsarrat B. // Mol. Cell. Proteomics. 2002. V. 1. P. 567–578.
- Huang L., Jacob R.J., Pegg S.C., Baldwin M.A., Wang C.C., Burlingame A.L., Babbitt P.C. // J. Biol. Chem. 2001. V. 276. P. 28327–28339.
- 21. Wang X., Chen C.F., Baker P.R., Chen P.L., Kaiser P., Huang L. // Biochemistry. 2007. V. 46. P. 3553–3565.
- 22. *Guerrero C., Tagwerker C., Kaiser P., Huang L. //* Mol. Cell. Proteomics. 2006. V. 5. P. 366–378.
- 23. Apcher G.S., Maitland J., Dawson S., Sheppard P., Mayer R.J. // FEBS Lett. 2004. V. 569. P. 211–216.
- 24. Moiseeva T.N., Bottrill A., Melino G., Barlev N.A. // Oncotarget. 2013. V. 4. P. 1338–1348.
- 25. Livinskaya V.A., Barlev N.A., Nikiforov A.A. // Protein Expr. Purif. 2014. V. 97C. P. 37–43.
- Hayter J.R., Doherty M.K., Whitehead C., McCormack H., Gaskell S.J., Beynon RJ. // Mol. Cell. Proteomics. 2005. V. 4. P. 1370–1381.
- Tomaru U., Ishizu A., Murata S., Miyatake Y., Suzuki S., Takahashi S., Kazamaki T., Ohara J., Baba T., Iwasaki S., Fugo K., Otsuka N., Tanaka K., Kasahara M. // Blood. 2009. V. 113. P. 5186–5191.
- Миттенбере А.Г., Моисеева Т.Н., Кузык В.О., Подольская Е.П., Евтеева И.Н., Барлев Н.А. // Цитология. 2014. Т. 56. С. 300–315.
- Scanlon T.C., Gottlieb B., Durcan T.M., Fon E.A., Beitel L.K., Trifiro M.A. // Exp. Cell Res. 2009. V. 315. P. 176–189.
- 30. Tai H.C., Besche H., Goldberg A.L., Schuman E.M. // Front. Mol. Neurosci. 2010. V. 3.
- 31. Goldberg A.L. // Nature. 2003. V. 426. P. 895-899.
- Besche H.C., Haas W., Gygi S.P., Goldberg A.L. // Biochemistry. 2009. V. 48. P. 2538–2549.
- 33. Зайкова Ю.Я., Куличкова В.А., Ермолаева Ю.Б., Боттрилл А., Барлев Н.А., Цимоха А.С. // Цитология. 2013. Т. 55. С. 111–122.
- Sdek P., Ying H., Chang D.L., Qiu W., Zheng H., Touitou R., Allday M.J., Xiao Z.X. // Mol. Cell. 2005. V. 20. P. 699–708.
- Yi P., Feng Q., Amazit L., Lonard D.M., Tsai S.Y., Tsai M.J., O'Malley B.W. // Mol. Cell. 2008. V. 29. P. 465–476.
- 36. Галкин В.Э., Туроверова Л.В., Константинова И.М., Пинаев Г. П. // Цитология. 1998. Т. 40. С. 161–166.
- 37. Галкин В.Э., Туроверова Л.В., Константинова И.М., Пинаев Г. П. // Цитология. 1998. Т. 40. С. 618–626.
- Галкин В.Э., Бабаков В.Н., Туроверова Л.В., Константинова И.М. // Цитология. 2000. Т. 42. С. 875– 883.
- 39. Kimura Y., Takaoka M., Tanaka S., Sassa H., Tanaka K., Polevoda B., Sherman F., Hirano H. // J. Biol. Chem. 2000. V. 275. P. 4635–4639.
- 40. Gomes A.V., Zong C., Edmondson R.D., Li X., Stefani E., Zhang J., Jones R.C., Thyparambil S., Wang G.W., Qiao X.,

Bardag-Gorce F., Ping P. // Circ. Res. 2006. V. 99. P. 362–371.

- Kimura Y., Saeki Y., Yokosawa H., Polevoda B., Sherman F., Hirano H. // Arch. Biochem. Biophys. 2003. V. 409. P. 341–348.
- 42. Моисеева Т.Н., Фёдорова О.А., Цимоха А.С., Миттенберг А.Г., Барлев Н.А. // Доклады Академии Наук. 2010. Т. 435. С. 267–271.
- 43. Denis N.J., Vasilescu J., Lambert J.P., Smith J.C., Figeys D. // Proteomics. 2007. V. 7. P. 868–874.
- 44. *Meierhofer D., Wang X., Huang L., Kaiser P. //* J. Proteome Res. 2008. V. 7. P. 4566–4576.
- 45. *Glickman M.H., Ciechanover A.* // Physiol. Rev. 2002. V. 82. P. 373–428.
- 46. Bienko M., Green C.M., Sabbioneda S., Crosetto N., Matic I., Hibbert R.G., Begovic T., Niimi A., Mann M.,

Lehmann A.R., Dikic I. // Mol. Cell. 2010. V. 37. P. 396–407.

- Chen B.B., Mallampalli R.K. // Mol. Cell. Biol. 2009. V. 29. P. 3062–3075.
- 48. *Mosesson Y., Yarden Y. //* Isr. Med. Assoc. J. 2006. V. 8. P. 233–237.
- 49. *Iwafune Y., Kawasaki H., Hirano H. //* Electrophoresis. 2002. V. 23. P. 329–338.
- 50. *Rivett A.J., Bose S., Brooks P., Broadfoot K.I.* // Biochimie. 2001. V. 83. P. 363–366.
- 51. Bose S., Stratford F.L., Broadfoot K.I., Mason G.G., Rivett A.J. // Biochem. J. 2004. V. 378. P. 177–184.
- 52. Laemmli U.K. // Nature. 1970. V. 227. P. 680-685.
- 53. Barrett A.J. // Biochem. J. 1980. V. 187. P. 909-912.

Mass Spectrometric Analysis of Proteasomes Affinity Purified from the Human Myelogenous Leukemia Cells K562

T. O. Artamonova*, M. A. Khodorkovskii*, A. S. Tsimokha**

*Phone: +7 (812) 297-37-40, fax: +7(812) 297-03-41; e-mail: atsimokha@mail.cytspb.rssi.ru *St. Petersburg State Polytechnical University

** Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St. Petersburg, 194064 Russia

Proteasomes carry out regulated proteolysis of most proteins and thereby play a crucial role in the regulation of different cellular processes. Dissecting subunit composition and post-translational modifications of proteasome is one of the important milestones in understanding their functions and mechanisms of regulation in the cell. To this end a strategy we followed a strategy for affinity purification of proteasomes from human myeloid leukemia cells with subsequent mass spectrometric analysis. Proteasomes were purified from the stable cell line K562 expressing HTBH tag-labeled 20S proteasome subunit β 7 (PSMB4) by non-covalent affinity purification on biotin-avidin beads, followed by elution with TEV protease. We identified all known subunits of the 26S proteasome, as well as PA200 and regulators PA28 γ amongst the eluted proteins, using MALDI-ICR mass spectrometry. We have shown that the proteasomes are associated with heat shock proteins, components of the ubiquitin-proteasome system of some cytoskeleton proteins. A number of novel phosphorylation, ubiquitination and N-terminal modification of proteasome subunits were found for 16 proteasome sub-units. Our results might be useful for further proteomic studies of proteasomes.

Keywords: affinity purification, human myelogenous leukemia cell, mass spectrometry, phosphorylation, proteasome, ubiquitin-proteasome system, ubiquitination